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J. Phys. A :  Gen. Phys., 1971, Vol. 4. Printed in Great Britain 

Statistical accuracy in the digital autocorrelation of 
photon counting fluctuations 

E. JAKEMAN, E. R. PIKE and S. SWAIN 
Royal Radar Establishment, hIalvern, Worcestershire 
MS. received 29th December 1970 

Abstract. We investigate the statistical errors which arise in digital autocor- 
relation of photon counting fluctuations due to the finite duration of 
experiments. An expression for the accuracy with which individual points of 
the autocorrelation function of intensities can be measured is derived analyti- 
cally and evaluated for Gaussian-Lorentzian light. The appropriate weighting 
for a ‘least-squares’ fitting procedure is determined and the error in spectral 
linewidth, obtained by this procedure from experiment, is calculated. 

1. Introduction 
The methods of intensity fluctuation spectroscopy are now being applied to a 

wide variety of physical problems including measurements of critical phenomena, 
transport, and turbulence (see, for example, Dubin and Benedek 1969, Cummins and 
Swinney 1970, Pike 1969). In  this paper we set out to find the answer to a conceptually 
very simple problem which arises when we attempt to employ these new methods, in 
particular that of digital autocorrelation of photon counting fluctuations (Jakeman 1970, 
Foord et al. 1970), to measure spectral linewidths. This problem may be stated as 
follows: for a given spectral linewidth and a given total light flux, what is the accuracy 
of the value obtained for the linewidth in a single experiment, as a function of the 
total duration of the experiment and the sample time used? The answer to this 
question is clearly of vital interest for practical applications; it would allow one to 
make optimum choices of expensive laser power and store capacity in particular 
circumstances, as well as informing the experimenter with given equipment of the 
time necessary to achieve a predetermined accuracy of measurement. 

Although conceptually simple the solution is quite lengthy and difficult. The 
fluctuations being sampled arise from both the statistical nature of the photodetection 
process and the intensity fluctuations due to the statistics and spectrum of the light 
field. We have not achieved a complete solution but give an approximation to it 
which we believe is sufficiently accurate to provide the guidance required in the 
planning of experiments. Preliminary results were presented in an earlier publication 
(Jakeman et al. 1970b). In  the course of the calculation we find the complete solution 
to the simpler problem of the accuracies of the measured values of the true intensity 
autocorrelation function (as distinct from any clipped form : Jakeman and Pike 1969) 
and their dependence on the parameters mentioned above, and on the delay time, 
for the case of spatially coherent detection. We also find a suitable weighting to be 
given in using these values to determine the spectral linewidth and investigate the 
effects of clipping and finite detector area on the results. 

T o  clarify the nature of the calculations to be carried out and to introduce the 
notation it is appropriate at this point to outline briefly the sampling scheme used in 
digital autocorrelation of photon counting fluctuations. Referring to figure 1, samples 
of the autocorrelation function are constructed at intervals T,, each sample consisting 
of -I4 channels containing the product n(0;  T )  n(rT;  T )  where the integer Y runs from 
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Figure 1. Sampling scheme used by Foord et al. (1970). 

1 to .!U, and n ( t ;  T )  is the number of photons counted in the interval T centred at 
time t. The integrated intensity E( t ;  T )  is defined in terms of the instantaneous 
intensity, 

where CY+ and 8- are the positive and negative frequency components of the field, 
assumed to have only one polarized component, by 

I ( t )  = B+(t)G-(t)  (1) 

*ir T / 2  

E(t; T )  = J I(t ') dt'. 
t -  T / 2  

I t  is not difficult to establish the following relationship between the autocorrelation 
functions, respectively, of photon counting fluctuations and integrated intensity 
fluctuations : 

G'2'(~; T )  = ( ~ ( 0 ;  T)n(T; T )  ) = x2 (E(0;  T)E(T; 7') ) T 2 T (3) 

G(2)(O; T )  = (n(0;  T)(n(O; T )  - 1) ) = 2 (E2(S;  T )  } T = o  

where s( is the quantum efficiency of the detector and we have assumed stationarity of 
the scattering processes. For simplicity we consider for the moment detection at a 
single space point only; the effects of spatial coherence will be discussed in 4 4. The 
sample time T is the resolution time of the instrument if, as we shall assume, dead- 
time effects are negligible. We shall assume that T is a multiple of T ,  when T ,  < T .  

This ensures that the information contained in one sample does not form part of 
the information contained in another sample. This general scheme of sampling has 
been considered in the first part of our calculations but in the instruments in use in 
this laboratory each sample is constructed within the time T and sampling is carried 
out with a period T,  = T to minimize information wastage. 
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In the next section we solve the problem of the accuracy of the values of the 
autocorrelation function measured using the above sampling scheme, firstly in 
general terms and then for the case of Gaussian-Lorentzian light. We discuss a 
number of limiting cases which can be treated analytically, whilst the more general 
results are presented graphically in figure 2. Drift of the mean photo-electron count 

Figure 2. Normalized variance of Gc2)(7) as a function of delay time and sample 
time for the values of the photon flux shown per coherence time. The  

::experimental time is given by NI'T = lo4,  the ordinate scales as 1V-l *. 

rate during the course of a series of experiments necessitates normalization of each 
complete measurement. This leads to a biased estimate of the normalized auto- 
correlation function and its effects will also be discussed in $ 2 .  In  § 3 rr-e tackle the 
problems of the errors in the measured values of linewidth, presenting the main 
results of the paper in graphical form in figures 3 and 4. Results are given for 20, 100, 
and effectively an infinite number of channels. We explain the approximations used 
to obtain these results and give uszful analytic forms for certain limiting cases. The 
effects of clipping and finite detector area are investigated in 5 4 and the final section 
is devoted to discussion of the graphs and formulae presented. 
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2. Statistics of the intensity autocorrelation estimator 

defined by equation (3) is 
An unbiased estimator for the un-normalized second-order correlation function 

1 M  

LIT r = 1 
e(’)(T) = - 2 %(t,+T)n(tr) .  (4) 

Here N is the total number of products constructed with the delay time T ,  and for 
simplicity we have dropped the sample time T from our notation. I t  is our purpose 
in this section to calculate the errors in the estimator (and in the measurement 
of the normalized second-order correlation function g‘2’(T) which is defined later) due 
to the statistical nature of light and the photodetection process in an experiment of 
finite duration. We assume that we are dealing with a stationary process and use the 
sampling scheme outlined in figure 1. Making use of the known results for this case 
the variance of &!(‘)(T) may be written as follows (Davenport and Root 1958) 

1 
Var e(’)(.) = - Var (n(T)n(O)) 

11; 

where 
R(kT,) = (n(kT,+T)n(kT,)n(T)n(O) ). 

As we have already pointed out, in an actual experiment the mean count rate may 
drift with time for reasons unconnected with the fundamental statistical properties 
of the signal, and it is usual to try to allow for this by determining the quantity 

This is a ‘biased’ estimator for the normalized second-order correlation function 

where A is the mean number of photo-electrons detected per sample. (By ‘biased’ we 
mean ( j ( 2 ) ( ~ ) )  # g‘”(T)). The degree of bias may be investigated by expand- 
ing the denominator of the right hand side of equation (7) about the mean before 
averaging. For large values of N this gives 

h’ N 

+ higher-order terms. (9) 

It can be shown that the first-order correction term to g(”(7) in equation (9) is of 
order l/N, and j ( 2 ) ( ~ )  as defined by equation (7) is an unbiased estimator to this 
order. 
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By a similar expansion to that used to derive (9) it may be shown that 

where A is the estimator for the mean count rate. 
This expression is valid provided that N is so large that the condition 

??-A 
iTi< 1 

is satisfied (see for example Farley 1969). 
JYe now calculate Var ( %'*)(T) )  for Gaussian-Lorentzian light using equations 

(5) and (6), turning our attention first of all to the evaluation of the R(KT,) term, 
Throughout the following calculations n-e shall assume for simplicity that the quantum 
efficiency of the detector is unity. This does not make the results less general provided 
they are expressed in terms of photon numbers rather than intensities. In  order to 
include the possibility that kT, = r for some value of k, say k = m, R(kT,) may be 
written using the relation between the joint photon counting and intensity fluctuation 
distributions for Poisson detection (for example Jakeman, 1970, equation (16)), in 
the form 

R(kT, )  = (E(kT,  + T)E(k T,)E(.T)E(O) ) + &, (E(~T)E(T)E(O)  ). (1 1) 

Using (2) the right hand side becomes 
k l , t  z + + T  *h. T ,  + $T n r t 4 T  

dt, 1 dt, 1 dt, dt, cl(tljl(t,>I(t,)l(t,) > 

1 dtl 1 dt2 riT dt3 <1(tl)I(t2)I(t3) > *  (12) 

k T p  t Z -  &T v k T , - $ T  * z - & T  c -$T 
n 2 z t 9 T  -z+ +T 

i 
2~ - ;r Z- :r -:T 

If k T ,  # T for any value of k ,  the last term does not contribute. The quantities 
( .I(tl)l(tz)l(t3)I((t*)) and <I(tl)l(t2)l(t3)> may be evaluated by using the factorization 
properties of Gaussian light (Glauber 1963 p. 150) to express them in terms of the 
normalized first order or field autocorrelation function 

For a Lorentzian spectrum of half width at half height F and centre frequency w o  
this takes the form 

R ( ~ ) ( - T )  = exp( - IT I T  I - iwor) .  

There is no difficulty in performing the integration in (12) and the sums in (j), but 
because of the length of some of the expressions obtained, we present the results in the 
appendix, where we also give explicit expressions for ( I (  tl)I( tJ1( t3)I( t,) ) and 
(I(tlNW(C3) > *  
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The first term in equation (5) may be obtained using a somewhat different 
approach. By definition. 

Var(n(.r)n(O)) = (n2(~) f i z (0)  ) - (n(T)n(O) )2 .  (13) 
This can be written in terms of the moments of the integrated intensity distribution 
following the procedure used to obtain equation (11): 

Var(n(.r)n(O)) = (E2(7)E2(0) ) + ( E 2 ( ~ ) E ( 0 )  ) 

+ (E(T)E2(0) ) + (E(T)E(O) ) 
- (E(T)E(O) >2 * (14) 

T o  evaluate (14) we need the second-order generating function 

Q(S, S’) = (exp - (ES + E’S’) ) 
which has been given for finite sample time T by Jakeman (1970). In  terms of this 
quantity we have 

which leads, for a Lorentzian spectrum, to the result 

Var(n(T)n(O)) 
f i4  

Here y = PT. 
Equation (16), in conjunction with equation (A3), gives us finally the variance of e@)(~) .  I n  figure 2 we give a three-dimensional plot of the standard deviation, 

(Var e(2)(~))1/2 divided by (e(2)(~) - f i 2 ) ,  as a function of PT and y for various values of 
the photon flux taking T = T,. We have taken N y  = lo4 throughout. This corres- 
ponds to a fixed experimental time of lo4 coherence times. 

To obtain Var g ( 2 ) ( ~ )  it is necessary to evaluate the additional terms given in 
equation (lo), which we denote by A :  

N O W  

and 
i 
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These quantities may be evaluated using the methods of 4 2.1, but the calculations 
are not given here. Instead we quote the expression for A to order l/N, and refer 
the reader to the Appendix for the exact results for < @ 2 ) ( ~ ) ~ )  and Var f f .  Assuming 
that AV 9 1 and m < N, A is given by 

where x = 2T7, m = x/2y. 
T o  be consistent with our discussion of the bias of $(* ) (T ) ,  only those terms in (A3) 

which are of order 1/N are retained during the course of its evaluation. T o  make 
contact with experiment we also assume that T ,  = T. We then find 

N 
374 
- Var G'@)(r> = 

where Var (a(.) n(0)) is given by equation (16). 
I t  is useful to consider the form Var ( $ ' 2 ) ( ~ ) )  takes in the following limits: 
(i) y < 1. This is a common experimental situation. We can expand the 

exponentials in (20) and (21) to obtain the expression 

We have written i i  = ~y SO that I? is the number of photons detected in a coherence 
time, In  a given experiment Y is determined by the scattering system, the power of 
the laser, and the direction of observation. T o  emphasize that we are interested in 
the experimental situation where the experiment time (that is, i v y )  is fixed and not the 
total number of samples (A? we have taken out a factor ( N Y ) - ~ .  

(ii) 7 < 1, Y < 1. Equation (22) becomes very simple if we assume that E is so 
small that the final term dominates. This is the situation in which the shot noise 
effect of the photon-detection process is the most important. Then 

It is interesting to note that one can write this expression in a particularly simple 
form in terms of GC2'(7) as 
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Equation (24) holds independently of the spectrum, because in the region where the 
‘shot noise’ dominates, it is the (E(T)E(O))  term of the Var(n(.r)n(O)) contribution (14)) 
t o  Var G‘2)(~)  (5))  which dominates. The  bias of j ( ” ( ~ )  does not affect its variance in 
this limit (that is, A N 0) and 

1 
Var j ( z ) ( T )  2: - Var &2)(T>, 

i i 4  

(iii) y < 1, ry  2 1. In  these circumstances, it is the first term of (22) that 
dominates and 

1 
Var j(”(7) 2: - (1 -t 8e- - e-2”(5 + 2%)). 

2 N y  

I n  this limit the strength of the signal is so great that the ‘shot-noise’ of the photo- 
detection process is negligible, and it is the statistical nature of the Iight which 
determines the variance of j(”‘(~). 

(iv) y $ 1, T o  determine the form of the variance in this limit we must go back to 
(A3),  (20) and (16). We find 

‘Thus, although the variance of the estimator for the un-normalized autocorrelation 
function tends to a constant in the large y limit, the variance of the biased estimator 
for the normalized autocorrelation function becomes vanishingly small. 

3. Statistics of the spectral linewidth estimator 
Turning now to the experimental determination of the spectral linewidth, I?, we 

investigate the best means of processing the data received from photon-counting 
experiments and the errors to be expected. 

During the evaluation of the results presented in the previous section (see 
appendix) it was assumed that the intensity autocorrelation function took the form 

where 

g‘”(T) = 1 + C exp( - 2r~) 

sinh2 y C=--- 
Y2 

is the correction factor due to the effect of a finite sampling time T (Pike 1969, 
Jakeman 1970). In  practice the factor C depends also on the detector area. hloreover 
it is altered by dead-time effects and by ‘clipping’. Since the T dependence in (27) is 
not changed by these corrections it is usually assumed for fitting purposes that C is 
an arbitrary constant independent of the linewidth. We suppose that in our experi- 
ments we have made measurements of the quantity i ( ” ( ~ ~ )  for A2 values of the delay 
time, and use the method of least squares to fit the measured points to a function of 
the form (27); that is, we minimize the quantity 
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where i = 1 ... 114, with respect to variations in C and p, xi. is the weighting which will 
subsequently be chosen to make the variation of I? a minimum. 

Performing the variations in C and f’, and eliminating C from the two equations 
so obtained, we find that must be chosen to satisfy 

Expanding this relation about r and g(2)(r)  to first order in the difference Sf’ = F - f‘ 
and Sg = g-2 leads to 

4 ( 8 P ) = 4 ~ a r l i  

(30) 
C,Zc,x,x3 exp{ - 2r(~ ,  + T~))(T~ - ?)(T, - 7) <Sj(2)(~i)8j(2’(~,) ) 

2 
(CX,Ti eXp( - 21?Tt)(g(2’(Ti) - 1)(T ,  - ?)}2  

where we have defined .T to be the right hand side of equation (29) with 
by P. I n  deriving (30) we have made the approximation that 

replaced 

Var$2)(T) = ([8f‘2’(Tj)]2 ) < (g‘”(Ti) - l)2. (31) 

We can always satisfy the above inequality for a given T ,  by making S (or -Yy) 
sufficiently large. 

Before proceeding a digression on the correlation of the errors is in order. If we 
assume that the errors are uncorrelated from point to point then 

<8 j (2 ’ (~ , )8 ,$2 ’ (~3 )  ) = ( [Sg‘2’(~,)]2 )Si, 

(8j‘2)(Ti)8~‘2’(Tc,) ) = { ([8~‘2’(T,)]2 ) ([8j‘2’(Tj)]2 ))112. 

(32) 

(33) 

whereas if they are fully correlated 

In  what follows we assume the errors are uncorrelated. We do this because, for 
sufficiently small E ,  the ‘shot noise’ effect of the photo-electron process dominates, 
and this is an uncorrelated noise process. Further, in the case y 9 1 the signal 
fluctuations are uncorrelated from sample to sample. Thus in this limit too the 
errors are uncorrelated. We have also performed some calculations using the 
weighting factors x i  which optimize the uncorrelated case but with the assumption 
that the errors are fully correlated. We find that the results lie well above the errors 
for the uncorrelated case for y < 1, but become almost equal for y 2 1. In the fully 
correlated limit the normalized standard deviation in takes the asymptotic forms 

4.1 

These may be compared with results based on the uncorrelated assumption presented 
in the last column of table 1. By numerical computation we have in fact found that 
the standard deviations in the two extremes of correlation almost coincide for all 
y 2 1. 
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Table 1. Analytic form of the error in r given by equation (36) in various 
limits 

Limit a b 

1 - 4 e - Z ~ t - 7 e - 4 ~  1 - 4 e - 2 ~ + 1 O e - 4 ~  1 -4e-ZY+se-'~ 2(y)1/2e21(1 + y )  

y $ 1  ___ ---_- 
16y3(1 + 1 / Y ) ~  4y(l + 1 ir)' 8y2(1 +I/Y)' r ( X y ) l Q  

t [ (S)  is the Reimann Zeta function. 

Thus if we assume the errors to be uncorrelated, we will obtain a good 
approximation to Var I? in the regions 6, y < 1, and y 5 1, whereas outside these 
regions we will obtain a lower bound. 

Assuming (32), (30) becomes 

. 1 &xi2 exp( - - T ) ~  Varg(*)(T?) 
(34) JTar r = 

4 {&xiTi (g(2) (Tz)  - I )  exp( - ~ J ? T ~ ) ( T ~  - ~ ) } 2  ' 

I t  is straightforward, if lengthy, to show that Var ? is minimized if we choose 

1 
A =  (35) 

A 
Var g(2)(Tt) 

XI = ___- 

and that with this choice for x, the minimum value of Var I? is given by 

lye note that in the region for which these results are applicable-see the inequality 
(31)-the weighting is reasonably flat. 

Clre have evaluated the espression (36) numerically for various d u e s  of y ,  J I  
and Y, using the general formula for Var g(*)(Tt) given by (lo), (16), (20) and (21). 
The results are shown as solid lines in figures 3 and 4. Figure 3 is a plot 
of Var P2/I '  (as a percentage) against y for values of the photon flux which range 
from 0.1 to 100 photons per coherence time. y varies from to 1. Figure 4 is a 
different way of presenting the same information for the case of an infinite number of 
channels. It is a plot of [T'ar r ] 1 ~ 2 ~ F ( a s  a percentage) against photon flux for various 
values of y ( y  varies from is to 1). We have taken N y  = lo4. Since (Var r)' 
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proportional to l/(Ny)l it is a very simple matter to scale these curves for other 
values of ATy. It is apparent that with 20 channels, for example, the minimum error 
is obtained when y lies in the range 0.06 to 0.1. We comment further on this in the 
discussion. 

We have also evaluated analytically expression (36) for some of the limiting cases 
discussed in 5 2 assuming that ,’Wy 9 1. The results are displayed in table 1. The  
first set of conditions shown in the table uill always be satisfied for sufficiently small 
y so that the value given for the error in f’ represents the asymptotic limit 7 -+ 0 in 
agreement with figure 3. In  evaluating the large y limit, the first two terms of the 
series (37), (38) and (39) must be retained because of cancellation. In  this case the 
error increases exponentially with y and is independent of the mean number of 
counts per coherence time when this is much greater than unity. 

4. The effect of clipping and finite apertures 
In  the last section it was assumed that the constant C appearing in the model 

form for the intensity autocorrelation function (27) was arbitrary and independent of 
the linewidth. Although this is a reasonable approximation as far as the fitting 
procedure is concerned, the factors which determine the value of C also affect the 
error in g(2)( . ) .  I n  particular it is important to understand the effect of clipping and 
of the finite areas of the source-detector system as determined by the aperture sizes 
used. In  general the calculations necessary are long and tedious and in view of the 
results presented in the previous section it seems reasonable to restrict consideration 
of this problem to the region y < 1. Since in experiments so far reported clipping 
has been carried out in one channel at zero level we shall further restrict ourselves 
to this case. Certain results for an arbitrary clipping level have already been published 
(Jakeman et aZ. 1970a) for the case when the samples of the autocorrelation function 
can be regarded as independent. 

In  the case of finite apertures two opposing effects must be considered-the 
averaging out of the signal by spatial integration over the detector area which will 
reduce the statistical accuracy of the measurement as this area is increased, and the 
increase in light flux which will tend to improve the accuracy in the same circum- 
stances, According to figure 4 the greatest reduction in error with increasing light 
flux occurs at small values of A where the statistics of the detection process are impor- 
tant and the formula (24) holds. The normalized variance of J @ ) ( T )  is given in this 
case by ( y  < 1) 

where 
1 

f(A) = -? I dr dr’/g(’)(r, t ;  Y’, t);’ 
A A  A 

has been evaluated by Scar1 (1968) and for a wider range of values of A by 
Jakeman et al. (1970). Since A oc A andf(A) decreases like A-l when the detector 
area is greater than a coherence area there is little to be gained even for small values 
of f i  by increasing the detector area beyond this value. If Y is such that E x 
accuracy will actually be lost by exceeding a coherence area, and for large Y the detector 
area should be reduced until Y - 10 counts per coherence time. 
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The effect of clipping at zero is negligible in the limit where equation (40) is 
valid, but becomes important as f i  is increased. We have evaluated the variance of 

where 

and 

in  the limit ^J < 1. The quantity measured experimentally is normalized as discussed 
in 4 2 and the estimator , j O c 2 ) ( ~ )  of the clipped intensity autocorrelation function is 
biased by a term proportion to 1,". This leads to a formula similar to equation (10) : 

where E o  = fi/(l+fi), Yi, is the estimator for the clipped count rate and 

is the single clipped intensity autocorrelation function (Jakeman and Pike 1969). 
I n  analogy with equation ( 5 )  it may be shown that 

k 2 N - 1  1 
N N k = l  

Var CO(,) = -Var(no(T)n(0))+ - 2 (l-T') 0 (Ro(kT)-  IG,'2)(~)12} (44) 

where 

This  quantity may be evaluated using the following formula 

R,(kT) = (n,(kT + T)n(kT)n,(.r)n(O) >. (45) 

+Q(S ,  S ' ,  S l ,  S1'))S '=S1'=0.  (46) 
s=s1=1 

Here the generating functions of two and three variables are derived from that of the 
fourfold intensity probability distribution P(I,  I ' ,  I,, 11') by setting the appropriate 
variable equal to zero. I t  is not difficult to show that in the small sample time limit, 
the latter is given by 

Q(S ,  S ' ,  Si, Si ' )  = 
1 

~44'4141' - g 1 2 4 d  -g22q'ql' -g32q1q' -g42q41f SS'S,S, 

-gb2qql -g62qq' +g22g52 +g32g42 +gI2g6' + 2glg3g5ql 
$-2glg2g4ql' + 2g2g3g6q' + 2g4g6g6q - 2glg!2gbg6 
- 2g,g,g4&% - 2g2g3g4g.5) - (47) 
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The first term on the right hand side of (44) is evaluated in a similar 
relation 

way using the 

(48) 

together with 

( n o 2 ( ~ ) 2 ( 0 ) )  = ( a 2 ) -  
s=o 

The final complicated analytic form is presented in the appendix 
results for the biasing terms appearing in equation (42). G'sing the fitting procedure 
described in the last section the percentage error in the linewidth was calculated and 
is plotted against y in figure 3 (broken lines). Comparison with the solid lines shows 
that the minimum error is shifted more rapidly towards lower values of y as P is 
increased in the clipped case. 

5 .  Discussion 
The qualitative features of Var i'2)(~) are similar to those of Var @')(T) but the 

former is uniformly smaller by an amount which increases as Y increases. Hence this 
discussion applies equally well to both Tar @ ) ( T )  and Tar d " ) ' ( ~ ) .  The main con- 
clusion to be drawn from figure 2 and formula (21) is that Var @)(,) is relatively 
insensitive to changes in T .  The strongest variation with delay time occurs for small 
values of y when equation (18) is valid. This implies a maximum possible fall-off 
factor of four over the entire range of T(  T < T < CO), but perhaps as little as two if 
Y is small. For large values of 7, Var is essentially independent of 7. As far as 
the experimenter is concerned it is a reasonable approximation to take a constant 
weighting when carrying out the type of fitting described in the last section. 

Excluding values of y 2 1 which give rise to large errors, little is to be gained by 
fitting the autocorrelation function beyond two or three coherence times. In  fact the 
results for M channels show that the minimum error is obtained when T is chosen 
so that .MPT N 2-3 when P lies in the range 0.1 to 1, and MTT N 1-2 when Y lies 
in the range 10 to 100. The  minimum is much sharper when iW is small than when 
iW is large. Moreover, if the maximum delay time and the total experiment time are 
regarded as fixed quantities it is evident from figure 3 that the error in linewidth 
cannot be reduced significantly by improving the resolution of the instrument beyond 
a certain value of T which depends on the number of counts per coherence time. In 
this region, roughly defined by E < 10-2,the increase in the number of points of the 
autocorrelation function used for fitting merely compensates for the increased error 
in these points for small y depicted in figure 2. Inspection of figure 4 on the other 
hand indicates that accuracy cannot be improved by increasing indefinitely the number 
of counts per coherence time; saturation takes place for P x 10. 

The above results have implications in connection with the optimum detector 
area to be used as mentioned in the last section. The number of counts per coherence 
time can be increased by increasing the detector area, but at the same time infor- 
mation is lost due to spatial integration over the receiver surface. Evidently if 
Y .. 10 there will be a net increase in error if the detector area is increased and if 
r > 10 it is advantageous to reduce the detector area until Y is of this order, However, 
when the photon statistics dominate the accuracy of the measurement, it may be 
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adyantageous to increase the detector area. Signal to noise ratios have been evaluated 
for large detector areas (i.e. A > coherence area and consequently Gaussian intensity 
statistics) by Haus (1967), Benedek (1968) and Cummins and Swinney (1969). Since 

is proportional to A, however, the error introduced by (40) cannot be reduced 
significantly by increasing the detector area in this limit. For small values of A the 
function f (A )  decreases rather more slowly and accuracy may be improved by 
increasing A up to about a coherence area, where the effect saturates, or to a value of 
A for which the l / A  dependence present in equation (40) ceases to dominate the 
error. 

The effect of clipping on the results is shown by the broken curves in figure 3. 
Strictly speaking these are only valid in the limit y < 1 but in practice represent a 
good approximation for values of y 5 0-3. For small values of r ,  which give rise to 
small values of A over the range of y values plotted, clipping at zero has little effect 
on the results as expected. ,A considerable increase in the percentage error in line- 
width is caused by clipping at zero when fi is large, however, due to the loss of 
information in these circumstances. One unexpected feature of the curves for Y = 100 
is that the clipped results actually fall below the unclipped ones for a range of small 
values of y. The origin of this effect is revealed by comparing the errors in the clipped 
and unclipped autocorrelation functions assuming that the samples are uncorrelated. 
In  this particularly simple case the normalized error in the unclipped autocorrelation 
function is given from equation (16) in the limit y < 1 by 

whereas when clipping is carried out at zero in one channel we have (Jakeman et al. 
1970 equation (4)) 

6 
C (f + n + 7 + 2 ~ )  ;g(1)(~):-2-(3+2ff). 

When < 1, (49) and (50) become identical, whilst for sufficiently large A (50) is 
greater than (49) as is also the case when T is large enough for the terms in Ig(l)(T) I -4 
to dominate. However, for A N 1 and sufficiently small T ,  (50) can actually be less 
than (49). This is not entirely surprising since we are comparing the variances of two 
different quantities and the contribution to the variance arising from the correlation 
of samples shows a similar behaviour. Owing to the kind of fitting procedure we 
have used, however, the error in linewidth depends through (36)-(39) only on these 
normalized variances so that clipping can improve the accuracy of a linewidth 
measurement in certain circumstances. We have then lost more information in the 
unclipped case by assuming C in equation (22) to be an arbitrary constant than we 
have lost in the clipped case due both to this assumption and to the clipping process 
itself. 

The  effect of clipping in one or both channels at values different from zero is a 
problem of some interest which has still to be solved for the sampling scheme shown 
in figure 1. Although some preliminary results for the case when the samples can be 
regarded as uncorrelated have already been presented (Jakeman e t  al. 1970b), 
analytical solution of the problem is in general difficult and computer simulation 
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techniques, commonly applied to analogous problems in the radar field seem more 
appropriate. Such calculations are under way and we hope to be able to use them to 
confirm the accuracy of the rather lengthy calculations presented here, by comparing 
a few particular cases, as well as to extend the results to higher clipping levels. We 
have regarded computer simulation as a last resort for, although not difficult to carry 
out, the number of parameters in the problem and the large numbers of samples to 
be calculated lead to lengthy computation times for each error value and an overall 
picture is not easily obtained. 

Appendix 
Here we shall set down in full various formulae which we have derived and used 

during the course of our calculations but which were too lengthy to include in the 
main text. 

(i) Var C ? ( 2 ) ( ~ ) .  In  order to evaluate equation ( 5 )  ( 5  2) we need to know R(kT,)' 
which is given by (12) if kT, = T for some integer value of K. Using the factorization 
properties of Gaussian light 

and 

where g,, = g(tl-tz) = exp( -rjtl-tz/) for a Lorentzian spectrum. The  time 
integrals in the expression for R(kT,) may be performed using (X1) and (A?) and the 
sums appearing on the right hand side may be performed to give 

F Y(2(1+7X)-  Y"(1 +3X)2!X}  
+ 3 ( m - 2 ~ ~ 2 ) ]  - [ 

(1 - Y)2 
+ F 13x2+ Y2 \ (1 - Y2) 

( Y  + 4 x ;  1) 
(1 - Y) 

1-4Y2"+3X2) 3mX2 -+- 
(1 - YZ) 

+ m - +2m(m - 3)X-  m+ F 

+ -  3m(m - 3)X2 )] + - ( l - m / N ) [ ( l -  1 1-2 (1+3FX2)+4X(F-  k2) 
2 ? 2? 

{1+FX(2+3X)) 
n 

where Y = exp( -2PT,), X = exp( -2I'T), F = (sinh2y)/y2, 2 = exp( -27) and we 
have assumed that mT, = T for some integer m. If T p  > 7 we obtain 

-- 
(1 + Y)2 

1 (l-EI")\(1-3X)2 + - -  
N 1-Y I X 

(A4)  is given for completeness although it is not used in the present work. 

(A4)l 
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(ii) Bias terms: Var g(T). We quote only the results 

11 - q + + x ( l + ; )  -- 4 X 
2" (1 + X ) ( 1 -  3 X )  

Y 2  

(iii) Var eo(2)(~).  This quantity is calculated as indicated in 5 4 retaining only 
the terms of order y - l  in the sum appearing in equation (44) and neglecting all terms 
of order L V - ~ .  The final result may be written in the form 

where 

Var (no(T)n(0)) = fio2(1 + 3 f i + ~ ~ ) + i i ~ ~ X ( A - ~ + 5  -+2A)-no4X2(3 +2A) (-48) 
(no(2T)n(T).o(~).(o)) = Eo3{(1 +fi) '+(1 +fi)(2+A)X+3(1 + i i ) X 2 - 2 a 3 )  (~49) 

508  

n2 
F(A, T )  = 2r7 X{2( 1 + A)(A2 + 2A + 2)  + X(A2 - 2R - 3 ) )  

1 *,e + [ 1 + ff3 X{fiX(fi2 - 2fi + 3 )  - 2( 1 + A ) ( 1 +  6 + A2) )  lg( 1 - f f ,2X)  

1 A,6 

n3 
- [ 1 + Eo2 - 2 X(nX(2 + A 2 )  - (1 i- 6)(2 + 311 + 267) lg( 1 - E o 2 )  

A,2 Go3 

n3 n4 
+2 7 (1 -Ao2X)-1 + y- (9 + 3A5 -A4 - A3 - 2A -2)  

Eo6 (1SA4 + 17A3 +4A2 - 3 A  -2)  go8 ( 6 E 3  +2A2 + A  + 1) -2-xx"- 
+ T X  (1 - A02) A5 (1 - Ao2)2 

X = exp( - ZFT), A, = A/( 1 + 6) as before. There is some inconsistency in neglecting 
the terms independent of y in evaluating the sum in equati,on (44) whilst retaining 
such terms in (AS) and (,49) (those terms proportional to A*). For sufficiently small y, 
however, this is not important. Calculations in fact show that the 'small y' approxi- 
mation leading to the above results is valid for values of y less than about 0.3, and 
thus in the region of chief interest (figure 3) .  

(iv) Bias terms: Var go'2)(~). 
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We quote the results in the 'small y' limit, neglecting terms of order 

A T (  (A $0 } - A E o )  = 8 0 2  (1 + l(y) 

K( ( GO'2)(~)A ) - Go'2)(~)A) = Ao2 2 -+ A + - i A 

x{l+rT(l+A)}J 
Ao2(A + 2) Eo3 (1 -GoX) -- no4 

Ay ( G 0 y 7 y o  ) - Go'2'(7)8,) = -____ - G,2X- - 
A A2 (1 - Ao2XX)2 $3 

X 
(1 - A02)2 
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